Distant Friends with Benefits: Social Spillover Effects from Out-of-State Medicaid Expansions

Jack Chapel*

April 7, 2024 DRAFT — Please click here for most recent version

Abstract

Many adults are eligible for public benefits programs but are not enrolled. This paper investigates whether information from geographically distant social networks can facilitate take-up of Medicaid, the U.S.'s low-income health insurance program. I estimate program take-up changes resulting from increased enrollment and salience among one's friend network due to state Medicaid eligibility expansions during 2010-2018. To isolate effects occurring through social channels, I restrict analyses to states that *did not* expand their Medicaid program and compare between communities with varying degrees of social connection to the expanding states. Potentially eligible adults with stronger social ties to the Medicaid expansions were more likely to enroll in the program following the expansions, even though eligibility was largely unaffected in their own state. The increase was reflected in decreases in uninsurance rates, with no impact on other sources of insurance. Effects transcended geographic distance and remained significant when considering only communities >100 miles away from an expansion state. I also find impacts on support for the Affordable Care Act and Medicaid among the broader population. The results show program experiences among one's friends can improve their own program participation and highlight how policy changes can have indirect impacts propagated through social networks.

JEL: H75, I13, I14, I18

^{*}Department of Economics, University of Southern California, Los Angeles, CA.

1 Introduction

Among adults who qualify for the U.S. health insurance program Medicaid,¹ only half take-up the benefit, leaving 1 in 5 eligible adults uninsured despite the availability of free (or near free) coverage (Blumberg et al., 2018; Decker et al., 2022). Non-participation is prevalent in many public programs, with barriers such as incomplete information, program stigma, and administrative burdens potentially impeding full enrollment (Janssens & Van Mechelen, 2022; Ko & Moffitt, 2022). Lack of participation in Medicaid is particularly concerning given its size² and potential benefits for healthcare access (Baicker et al., 2013; Miller & Wherry, 2019; Wherry & Miller, 2016), financial well-being (Hu et al., 2018; Miller, Hu, et al., 2021), and reduced mortality (Miller, Johnson, et al., 2021; Sommers, 2017; Wyse & Meyer, 2023). Understanding the barriers to Medicaid enrollment and how to overcome them is therefore essential for achieving universal health insurance coverage and improving societal welfare.

In this paper, I study the extent to which people's social networks facilitate their participation in Medicaid. Research suggests a lack of program knowledge—such as awareness of the program's existence, their own eligibility, or how to navigate program rules—is an important source of incomplete take-up, including in Medicaid (Aizer, 2007; Flores et al., 2016; Haley & Wengle, 2021; Heckman & Smith, 2004; Kenney, Haley, Anderson, et al., 2015; Stuber et al., 2000). Friends are a key source of information and could play an important role in overcoming such barriers. If an eligible adult has friends who become enrolled in Medicaid or otherwise learn more about the program, natural information flows within their network might cause them to learn about their own eligibility, how to navigate enrollment, or the benefits they could receive. Friends could also serve as a more trusted information source that may be less easily substituted with other assistance providers like patient navigators, whom some might see as less trustworthy bureaucrats. On the other hand, if friends do not naturally share their program knowledge or have bad program experiences, network effects on take-up could be non-existent or even negative.

I test whether increasing Medicaid enrollment and general salience within one's friend network causes them to be more likely to enroll in the program themselves. Identifying causal

¹Medicaid is the United State's public health insurance program for the low-income population. *Medicaid* is sometimes confused with *Medicare*, the health insurance program for the population ages 65+. See, e.g., Donohue et al. (2022), Currie and Duque (2019), and Buchmueller et al. (2016) for overviews of the program and its history.

²Medicaid is the largest means-tested program by spending and enrollment (Buchmueller et al., 2016), and it covers more Americans than any other health insurance program (Donohue et al., 2022).

network effects in public program participation can be challenging. Researcher have tended to rely on strategies leveraging close geographic proximity to proxy for social networks (Aizer & Currie, 2004; Bertrand et al., 2000; Chetty et al., 2013; Grossman & Khalil, 2020), but this strategy can be complicated by issues of correlated shocks or unobservables among the network, endogenous network formation and reflection problems (Manski, 1993). Moreover, small neighborhood networks are not representative of the scope of people's social ties in the modern world; today, geographically distant networks facilitated online or through other communications technology may be as influential in people's lives as their local community members. Understanding the impacts such broad networks might have on behavior and their interaction with policy is increasingly important.

To isolate the social network effects in Medicaid take-up, I estimate how people respond when their *out-of-state* friends experience a policy change that sharply increased enrollment, even though there was no such change in their own state. The analyses center around Medicaid eligibility expansions occurring during 2010–2018. A major provision of the Affordable Care Act of 2010 expanded Medicaid eligibility to include all low-income adults under 138% of the federal poverty line.³ However, only about half of states initially implemented this expansion, resulting in large increases in the eligible and enrolled populations in some states (Courtemanche et al., 2017; Miller & Wherry, 2019) while others left their eligibility rules largely the same.

Focusing on communities (ZIP codes, counties, and Public Use Microdata Areas) within the 19 states that had not expanded Medicaid as of 2018, I estimate the effects of social exposure to the expansions. To measure social network exposure, I use the Facebook Social Connectedness Index (Bailey, Cao, Kuchler, Stroebel, & Wong, 2018) to capture the number of friendship links between each pair of ZIP codes. Within each non-expansion state, communities have varying degrees of social connectedness to the expanding states, measured as the number of friends living in expanding states per community resident. When some states expanded their Medicaid eligibility, communities in the non-expanding states experienced varying increases in Medicaid enrollment and general salience among their networks due to their differing social exposure. I estimate the impacts of this arguably exogenous shift in a difference-in-differences framework by comparing between communities with relatively larger shares of friends in the expanding states compared to similar communities in the same

³Previously, Medicaid eligibility rules varied by state and were primarily targeted for low-income children, parents and pregnant women, people with disabilities, and long-term care in old age. Only Delaware (1996), Massachusetts (2006), New York (2001), and Vermont (2000) had state programs implemented earlier that offered coverage more broadly to include low-income childless adults.

state but with fewer out-of-state friends experiencing an expansion, before and after the expansions took place.

I first estimate impacts on Medicaid take-up using ZIP code-level data from the American Community Survey, accessed through IPUMS (Manson et al., 2023). Having one standard deviation higher strength of social connection to the Medicaid expansion states caused ZIP codes to experience a 1.5% increase in the scaled number of non-elderly adult (ages 18–64) Medicaid enrollees⁴—even though eligibility was largely unchanged in their state—compared to other ZIP codes in the same state but with less strong social connection to the expansion states. I similarly estimate the insured rate among non-elderly adults under 200% and 138% of the poverty line increased by 0.37 percentage points (0.65% of the baseline mean) and 0.58 percentage points (1.1% of the baseline mean).

The ACS ZIP code data provides high geographic granularity to utilize the most detailed Social Connectedness Index data available, but it comes with the trade-off of less ability to customize the analysis sample and has lower temporal frequency than other potential options. To examine dynamic effects over time, assess potential pre-trends, and investigate effect heterogeniety, I next turn to the ACS microdata (Ruggles et al., 2023). The benefit is that the microdata are available annually for over 3 millions respondents with detailed demographic and economic information, allowing me to more precisely identify potential beneficiaries and explore differences by individual characteristics. The trade-off is that I sacrifice geographic granularity and instead aggregate ZIP code SCI to Public Use Microdata Areas (PUMAs), the smallest geographic unit available in the microdata.⁵

Low-income adults in PUMAs with stronger social connections to the Medicaid expanding states were more likely to enroll in Medicaid after the expansions compared to those in PUMAs in the same state but with less connection to the expansions. Specifically, a one standard increase in friends per person in Medicaid expansion states increased the probability of take-up among potentially eligible low-income adults (parents and people with disabilities)

⁴ZIP code data from the American Community Survey is published as 5-year pooled estimates. I use data from the 2008-12, 2009-13, 2014-18, and 2015-19 periods. Since Medicaid enrollment is only published as ZIP code population counts for selected age groups, I scale Medicaid enrollment by the under 200% poverty line population rather than a take-up rate. The ACS does publish rates of any insurance for selected age groups and income levels, which I use as additional outcomes.

⁵Public Use Microdata Areas are statistical geographic areas created by the Census and are the smallest geographic unit available in the American Community Survey while covering the entire United States. They are created to partition the United States into geographic areas that are as small as possible while containing enough people to avoid privacy and disclosure concerns. There are 2,378 PUMAs (2010 delineation), compared to 3,143 counties. In urban areas, they can be smaller than counties, and in sparsely populated areas they tend to be larger than counties.

by 0.7 percentage points.

To view dynamics over time and assess potential pre-trends, I implement an event study specification that compares PUMA with above vs. below their state's median social exposure to the expansions.⁶ The event study shows no evidence of differential pre-trends, and there is a sharp increase that persists for at least two years after social exposure to expansion. The annual PUMA estimates have a time varying treatment, I further show that estimates are robust to using methods from Callaway and Sant'Anna (2021) to address concerns resulting from two-way fixed effects regressions with staggered treatment adoption.

The changes could result from people who would otherwise not have any insurance, or there could be crowd out of other sources such as employer sponsored health insurance. I next estimate the impacts of PUMA social exposure to Medicaid expansions on overall insurance and individual insurance sources among potentially Medicaid eligible low-income adults. I do not find effects on insurance sources including Medicare, other public, employer sponsored, and other private, and I find a positive effect on the probability of any insurance coverage that is similar in magnitude to the effect on Medicaid. This evidence is suggestive that the effects are drive by individuals gaining new coverage rather than switching coverage sources.

The American Community Survey data provides respondents' self-reported coverage by Medicaid, which could be subject to measurement errors from misreporting. In a second setting, I utilize administrative enrollment data from California's Medicaid program, which reports monthly enrollment counts at the ZIP code level. California implemented an early Medicaid expansion beginning in 2011 and rolled out at the county level. In a similar strategy, I estimate event studies comparing ZIP codes in non-expanding counties but with differential exposure to Medicaid expanding counties. I focus on the initial round of expansions in July 2011, which included some large counties like Los Angeles. I find that ZIP codes with above median social connection to the expansion counties exhibited 1-2% higher Medicaid enrollment following the expansions compared to those with below median social network exposure. In addition to confirming the results not due to misreporting, these estimates show the results may generalize beyond the specific context of the 2014–16 expansion period.

A final validity concern is the possibility that contemporaneous, correlated shocks could

⁶Most of the initial expanding states implemented the expansion in 2014, but some expanded in 2015 and two expanded in 2016. I measure the state median in 2018 (i.e., median among exposure to all expansion states) and I consider a PUMA treated in the year its social exposure to states that had expanded Medicaid by that year reached above the state median. Therefore, treatment is time varying.

occur even at the ZIP code level. As another robustness check, I next consider a different proxy for one's social network: their state of birth. People born in a different state are more likely to have social connections to that state than other residents in their neighborhood born in other states. Now, the comparison is between individuals living within the same PUMA but born in different states. The identifying assumption is that individuals living within the same PUMA would have the same evolution of Medicaid take-up over time in the absence of the expansions. Local, time-varying shocks that impact Medicaid enrollment will not violate the identifying assumptions as long as the shocks do not differentially impact people from different birth states living in that PUMA. I find the probability of Medicaid enrollment increases by 0.6–0.8 percentage points after a potentially eligible adult's birthstate expanded Medicaid. These results are in the same range of magnitudes as the baseline results, although the variables are not directly comparable.

Social connectedness is generally higher and more diverse in more urban areas, and thus there might be important differences in effect by urbanicity. Separating ZIP codes by urban and rural status I find similar effects and no evidence of heterogeneity. Social connections are also strongly related to geographic proximity. I use two strategies to explore the role of distance. First, to examine the importance of living on the border of an expansion state, I estimate the impact of expansions comparing border ZIP codes to interior ones among all states sharing a border with an expansion state. I find border ZIP codes had 1 percentage point higher scaled enrollment after the expansions compared to interior ZIP codes. Next, to assess the extent to which these border communities might drive results, I estimate regressions excluding ZIP codes within 50, 100, and 200 miles of an expansion state. I find the effect of social exposure to the Medicaid expansions remains even when only considering ZIP codes that are similarly far away from the expansion states.

To further shed light on how the Medicaid experience's of one's friends might change their own knowledge and behaviors, I next turn to examine effects on individual's policy preferences. The effects of social network exposure on knowledge and preferences may not confined to just those potentially eligible for the program—having friends enrolled in Medicaid could alter policy opinions even for non-eligible adults, potentially changing public approval of the program and, in turn, influencing its future operation and sustainability. Theories of public program approval often depend on the perceived deservedness of beneficiaries (Gilens, 2000). More stringent criteria might correlate with higher approval, particularly for populations not typically viewed as deserving, by ensuring that only the "truly needy" benefit. However, it's not clear that this is generally the case; the relationship between eligibility and approval likely hinges on the social construction of the beneficiary population and the nature of the benefits provided by the program. For example, healthcare might be perceived as a different kind of benefit compared to supplemental income, each carrying its own set of social and moral evaluations (Jensen & Petersen, 2017). The act of expanding eligibility also inherently alters the social construction of the program's beneficiaries. Including individuals with higher socioeconomic status (SES) might dilute the prevailing stereotypes and perceptions about the "typical" beneficiary.

I estimate policy preference responses using data from the Cooperative Congressional Elections Study (CCES). Since 2012, the CCES has included a question about whether the respondent supports Congress repealing the ACA. Although not directly a question about Medicaid, expansion was one of the major and most prominent components of the legislation, and so overall support for the ACA is likely to be related to and affected by support for the Medicaid expansions. Using the county-level SCI and the same identification strategy as above, I find that counties with one standard deviation more friends per person in non-expansion states exhibited a 2 percentage point increase in support for the ACA.

In a second specification using ZIP code-level SCI, I compare differences between neighborhoods within the same county and year but with differing social exposure and find similar effects. In similar analyses using alternative healthcare policy questions but without the benefit of a pre-period for comparison, I find ZIP codes with one standard deviation higher social exposure were more likely to support their own state expanding Medicaid (4.6 percentage point increase) and increasing healthcare spending (2.2 percentage point increase), whereas I do not find a statistically significant difference in preferences for welfare spending. These results suggest the effects are driven by specifically healthcare related policy preferences.

The results highlight the important dynamics of how geographically dispersed social networks can influence local public benefits participation, particularly in the digital age where social ties are not confined by physical proximity or boundaries. The findings also suggest that policy changes in one jurisdiction can have ripple effects beyond its physical borders, influenced by the intricate web of social connections. Policymakers may need to recognize and account for these broader social influences when designing and implementing public programs. Considering such unforeseen spillovers can lead to more effective policy design and better-informed expectations about program outcomes.

1.1 Related Literature

The results contribute to a few strands of literature. First, I build on the literature on incomplete public benefits take-up and related barriers (Aizer, 2003; Bhargava & Manoli, 2015; Heckman & Smith, 2004; Janssens & Van Mechelen, 2022; Ko & Moffitt, 2022; Moffitt, 1983), in particular the role of social spillovers in program take-up (Aizer & Currie, 2004; Bertrand et al., 2000; Dahl, Kostøl, et al., 2014; Dahl, Løken, et al., 2014). Experimental evidence has found that interventions providing program information to potential beneficiaries can improve take-up (Bhargava & Manoli, 2015; Finkelstein & Notowidigdo, 2019). Social networks might help provide additional program information; most evidence focuses on very local social ties (e.g., neighbors), examining associations between individuals' own program behavior and the behavior of their local network (Aizer & Currie, 2004; Bertrand et al., 2000; Chetty et al., 2013; Grossman & Khalil, 2020). It can be difficult to distinguish social network effects in this approach from other explanations such as endogenous sorting into neighborhoods or the effects of other correlated neighborhood characteristics. By examining the effects of a distant policy change that did not directly impact the study population, I isolate the social network impacts from these other potential explanations. Focusing on hyper-local networks also misses the growing importance of distant networks facilitated by communication technology, which are nearly as important but might operate differently from the impacts of local networks. I contribute to the limited evidence examining the effects of broader social networks (Dahl, Løken, et al., 2014; Wilson, 2022).

Chetty et al. (2013) find that people's neighborhood social networks can help overcome information frictions and assist them more optimally claiming the Earned Income Tax Credit (EITC). Wilson (2022) examines more distant online networks and finds social ties to state EITC programs might influence local EITC claiming behavior. It is not obvious that these results in the context of a tax-based income program with relatively higher take-up would be similar in Medicaid, an insurance program which requires application and renewal outside the tax system and may be subject to different types of information and stigma frictions. Moreover, these studies estimate impacts on how EITC recipients change their filing behavior but not on the extensive margin for whether they enroll in the first place.

A smaller literature related to program take-up has studied so-called "woodwork effects," where previously eligible individuals are induced to enroll in a program after eligibility expansions. Most of this evidence comes from Medicaid expansions (Frean et al., 2017; Hudson & Moriya, 2017; Sacarny et al., 2022; Sommers et al., 2012; Sonier et al., 2013). These studies tend to estimate the effects of a state expanding eligibility for a program on the

behavior of the previously eligible in the same state (Anders & Rafkin, 2022). Researchers theorize this "woodwork effect" is driven by a combination of social network effects improving information or stigma frictions, but it is challenging to disentangle these social effects from other program changes that might otherwise reduce transaction costs for the previously eligible (e.g., through accompanying program operation changes), and more work is needed in this area (Sacarny et al., 2022). Since individuals in my study population are not directly impacted by the policy change, I argue my results are exclusively caused by social network effects, providing evidence that social networks add a distinct take-up effect independent from other program changes. Moreover, this evidence tends to come from estimating the impacts of having a parent become eligible for Medicaid on their previously eligible child's enrollment—I instead focus on adult peer networks, which might operate very differently than the effects of within-household eligibility changes. Finally, scant evidence has examined the apparent woodwork effect that occurred in the non-expansion states, and those that do touch on this subject come to conflicting findings on whether a woodwork effect occurred in the non-expansion states (Courtemanche et al., 2017; Frean et al., 2017). I fill this gap by providing evidence that a woodwork effect occurred in the non-expansion states, operating through social ties to the expansion states.

I also contribute to literatures related to the determinants of public program approval (Gilens, 2000; Jensen & Petersen, 2017; Nicholson-Crotty et al., 2021)and the diffusion of policies across geographies (DellaVigna & Kim, 2022; Gray, 1973; Linos, 2013; Shipan & Volden, 2008; Walker, 1969). DellaVigna and Kim (2022) study the evolution of polarization and policy diffusion in the US; they document that policy diffusion across states was best predicted by geographic proximity in 1950–2000, but since then political alignment has been the strongest predictor. These studies are limited in their ability to identify the policy experience of others as a causal impact on own policy preferences. An exception is Shigeoka and Watanabe (2023), who use quasi-randomization in neighboring election cycles in Japan to study the causal extent of policy diffusion and find neighboring jurisdictions are more likely to adopt similar policy. I contribute to this literature by providing causal evidence that the experience of one's geographically distant social network being exposed to a policy change influenced their own preferences about similar policies.

When considering how program eligibility impacts public approval for the program, the perceived deservedness of the beneficiaries usually key (Gilens, 2000). For example, Keiser and Miller (2020) find that, particularly among more conservative voters, information about higher administrative burdens in the TANF program increased public support. This relationship likely depends on the social construction of the beneficiary population (Nicholson-Crotty et al., 2021), and it's not clear that a health insurance program would have the same "deservedness" relationship as income-based programs (Jensen & Petersen, 2017). I add to this evidence by showing that expanding eligibility in Medicaid to a larger and higher income population increased support for the program.

Finally, my work contributes to a growing literature on the impacts of geographically distant social networks more generally, particularly for financial decisions (Kuchler & Stroebel, 2021). For example, Hu (2022) estimates the impact of being socially connected to distant flood events and finds it increases flood insurance purchases. And Bailey, Cao, Kuchler, and Stroebel (2018) and Bailey et al. (2019) find changes in geographically distant housing markets impact people's house price expectations and purchasing decisions. I extend this work to include public program take-up and public approval as an economic behavior that can be influenced through social networks.

2 Institutional Background: Medicaid and the Affordable Care Act

Medicaid is the United State's public health insurance option for the low-income population. It was established through the Social Security Act Amendments of 1965. Medicaid is sometimes confused with Medicare, the public health insurance program for ages 65 and over, which was also created under the Social Security Act Amendments of 1965. State participation in Medicaid was initially voluntary, but by 1982, when Arkansas adopted, all states had a Medicaid program.

Medicaid operates through a federal-state partnership. States administer the program and manage benefits and eligibility, and the federal government sets baseline program standards and provides matching funds. In 2009, the federal government was responsible for 66% of the \$381 billion (2009 USD) total Medicaid outlays for the year (Truffer et al., 2010). In 2021, 69% of the \$728 billion (2021 USD) in Medicaid spending was paid by the federal government (Williams et al., 2023).

States determine their Medicaid program's eligibility and benefits. Eligibility is determined based on income as well as other individual characteristics, and the income eligibility threshold often differs by subgroup (e.g., children, parents).⁷ The eligibility groups covered

⁷The Kaiser Family Foundation publishes Medicaid income eligibility thresholds for major subgroups by

by Medicaid have evolved over time and can generally be categorized into six subgroups of the low-income population: (1) children, (2) pregnant people, (3) parents and caregivers, (4) people with disabilities, (5) people over age 65, and (6) non-disabled, childless adults. As the program has evolved over time, eligibility has expanded to eventually cover all of these groups in most states as of 2023; non-disabled, childless adults were the last group to begin gaining widespread eligibility (discussed further in Section 2.1 below).

Children have long been the largest subgroup of beneficiaries (Currie & Duque, 2019). This group began growing significantly in the late 1980s when states raised income eligibility limits for children and pregnant women. The passage of the Children's Health Insurance Program (CHIP) in 1998 expanded income eligibility limits further and led to continued increases in the number of children covered.⁸ By the mid-2000s nearly half of American children were eligible (Currie et al., 2008). Children continue to have higher income eligibility thresholds than most adult eligibility categories.

Coverage of the age 65 and over population is much lower and has remained more stable. Most healthcare for the old is covered through *Medicare* rather than *Medicaid*. The main purpose of Medicaid coverage for the old-age population is for nursing homes and long-term care. Oftentimes, older Americans who have spent down their resources in later life will then become eligible for Medicaid, which now covers the majority of nursing home residents (Kaiser Family Foundation, 2017).

States are required to grant Medicaid eligibility to people who qualify for Supplemental Security Income, a program for individuals with low incomes and assets and who have a workimpairing disability. This is not to be confused with Social Security Disability Insurance, which is connected to one's work history and can grant access to Medicare.

For non-disabled adults, Medicaid coverage was historically reserved for parents and other caretakers with the exception of only a few states. Low-income, childless adults who did not meet disability requirements were largely left without a publicly provided health insurance option. This changed, however, with the passage of the Affordable Care Act in 2010.

state and year since the early 2000s https://www.kff.org/statedata/collection/trends-in-medicaid-income-eligibility-limits/.

⁸Although Medicaid and CHIP are separate programs, states may bundle their administration and management and thus they are often considered as parts of the same broad program.

2.1 The ACA Medicaid Expansions

The Patient Protection and Affordable Care Act of 2010 (ACA) was enacted with the goal of reducing the number of uninsured Americans and improving access to care. A major provision of the ACA initially required states to expand Medicaid eligibility to all adults in families under 138% of the federal poverty line, which would grant new Medicaid eligibility to the non-disabled, childless adults previously excluded from eligibility in all but a few states. The costs of covering this new eligibility group were to be paid in full by the federal government with states gradually paying up to 10% of the cost by 2020. However, in 2012 the Supreme Court ruled in *National Federation of Independent Business v. Sebelius* that requiring states to expand their Medicaid programs was unconstitutional and thus states could choose whether to take the new eligibility expansion or maintain their previous eligibility and funding.

Figure 1 shows states' Medicaid expansion status as of 2018 (the last year in my study period), based on data from the Kaiser Family Foundation (Kaiser Family Foundation, 2023) and supplemented with additional state information. Most of the Southern states and many Midwestern states did not expand Medicaid. Figure 2 shows the growth in the number of states expanding Medicaid coverage to all low-income adults. Only four states had Medicaid programs that covered low-income non-disabled, childless adults before 2010. With the passage of the ACA, a few states expanded eligibility early before the primary role out in 2014, during which an additional 17 states expanded. Five additional states expanded in 2015 and 2016, after which there was a multi-year lull in major eligibility expansions. Since 2019, eight additional states expanded Medicaid, mostly through ballot initiatives rather than legislation (Brantley & Rosenbaum, 2021).

Figure 3 shows the trends in Medicaid enrollment in expansion states versus nonexpansion states using American Community Survey data. There was a marked, approximately 20 percentage point increase in the proportion of low-income adults enrolled in Medicaid after 2014 in expansion states, which is not surprising given the large increase in the eligible population. However, there was also a smaller but meaningful increase in the non-expansion states, which might suggest spillover effects across state lines.

2.2 Medicaid Take-Up and the Woodwork Effect

Medicaid take-up has tended to be far bellow full enrollment, depending on the eligibility population. Kenney et al. (2012) estimated Medicaid participation rates in 2009 (before the ACA expansions) were 67% among eligible adults, 17 percentage points lower than for children. Sommers et al. (2012) similarly found an adult take-up rate of 63% in 2005–10, and was highest for disabled adults (76%) and lowest for childless adults (38%, though they were not eligible in most states at the time). Decker et al. (2022) modeled post-ACA adult Medicaid enrollment and estimated the take-up rate was 44%–46%. Moreover, they found the participation rate was similar in expansion and non-expansion states, contrary to estimates from before the ACA.

A number of studies have examined the potential barriers to Medicaid participation, including information frictions, stigma, and administrative burdens. Kenney, Haley, Pan, et al. (2015) find that although awareness of Medicaid/CHIP for children was very high among low-income uninsured parents, only half were aware they were eligible. Aizer (2003) and Aizer (2007) finds community outreach efforts improved take-up in California, with information and administrative burdens being key barriers, especially among Hispanic and Asian Americans. Stigma has been suggested as a barrier to Medicaid take-up, but Stuber et al. (2000) and Stuber and Schlesinger (2006) have found it to be less important in Medicaid than other welfare programs. On the other hand, administrative burdens are a key barrier for public insurance enrollment (Bansak & Raphael, 2007) and policy changes to reduce them can improve take-up (Fox et al., 2020). For example, Ericson et al. (2023) experimentally implemented a "check the box" streamlined enrollment intervention in Massachusetts' insurance marketplace and found it increased enrollment by 11% with effects concentrated among those eligible for zero-premium plans. Research suggests behavioral factors like complexity, procrastination, and salience of future benefits can also be important Baicker et al. (2012)and small nudge interventions (e.g., information pamphlets, automated phone call reminders) can help (Wright et al., 2017).

Of particular interest to policy-makers, especially during the ACA Medicaid expansions, is the "woodwork" or "welcome-mat" effect (Sonier et al., 2013). The "woodwork effect" refers to the phenomenon where individuals who were already eligible for Medicaid, but had not previously enrolled, come "out of the woodwork" to register when Medicaid expands or undergoes significant policy changes. This surge in enrollment from previously eligible but unenrolled individuals can occur for various reasons, such as increased awareness and publicity about the program, reduced stigma associated with assistance, or enhanced outreach efforts from the state. Push-back by states against the proposed expansions of Medicaid centered around state budget concerns (Murray, 2009; Stanton, 2009). Fear of this woodwork effect further added to concerns over increased costs if a state were to expand Medicaid under the ACA, since only coverage for the newly eligible adults would be financed by the federal government.

Researchers have found evidence of the "welcome-mat" effect following the ACA Medicaid expansions (Frean et al., 2017; Hamersma et al., 2019; Hudson & Moriya, 2017; Sacarny et al., 2022). However, most of the evidence measures the effects of expansions on the previously eligible within the expanding state, and therefore evidence is lacking attempting to disentangle the causes of this effect—to what extent was the "welcome-mat" effect driven by the social channels of interest in the present study (e.g., information, stigma) versus coming from other contemporaneous policy changes that could have made enrollment easier? Understanding the sources of effect are important for future policy design. Moreover, most evidence on the "welcome-mat" effect regards previously eligible children enrolling after their parents become newly eligible. It is not clear that this within-household effect would generalize to a similar effect through adult peers, and it could be driven by non-social factors as the household's total administrative burden also decreases.

3 Empirical Strategy

Given the large increases in Medicaid enrollment caused by the ACA eligibility expansions, I estimate the spillover impacts this might have had on non-expansion states. In other words, I test whether the Medicaid expansions caused a woodwork effect in the non-expansion states through their social connectedness to the expansions.

3.1 Facebook Social Connectedness Index

To proxy for social connections across space I use the Facebook Social Connectedness Index (SCI), created by Bailey, Cao, Kuchler, Stroebel, and Wong (2018) based on anonymized Facebook user data. The SCI estimates the relative probability of friendships between county-to-county and ZIP code-to-ZIP code pairs. For geographies (e.g., counties) i and j, SCI_{ij} is calculated as the number of Facebook friendship links between users in i and j, divided by the product of i's and j's total Facebook user population

$$SCI_{ij} = \frac{FacebookFriends_{ij}}{FacebookUsers_i \cdot FacebookUsers_j},$$

representing the probability that two representative users in i and j are friends with each other. For privacy reasons, Facebook introduces a scaling factor such that SCI ranges from 1 to 1,000,000,000. SCI is a measure of the relative probability of friendship; if county SCI_{ij} is twice as large, then a representative user in county i is twice as likely to be friends with a representative user in county j.

I use the SCI to proxy for two places' social connectedness, online and offline, not just through Facebook interactions alone. The SCI has been found to correlate strongly with other proxies of connectedness, such as county-to-county migration patterns and trade (Bailey, Cao, Kuchler, Stroebel, & Wong, 2018), and to be an influence in economic behavior (Kuchler & Stroebel, 2021). For example, Hu (2022) find distant environmental shocks impact households' insurance decisions when they are more socially connected to the shocked area. Bailey, Cao, Kuchler, and Stroebel (2018) and Bailey et al. (2019) find changes in geographically distant housing markets impact people's house price expectations and purchasing decisions. And Wilson (2022) observes changes in Americans' Earned Income Tax Credit filing behavior when their out-of-state friends experience state EITC implementations.

3.2 Estimating Social Exposure Effects

For each community c, I define the social exposure to Medicaid expansions as the total number of friends in communities d in states that had expanded Medicaid as of year t, scaled by the communities population (i.e., friends per person):

$$SocialExposure_{c,t} = \sum_{d} pop_d \cdot SCI_{c,d} \cdot MedicaidExpanded_{s(d),t},$$
(1)

where $MedicaidExpanded_{s(d),t} = 1$ if state s(d) had expanded Medicaid as of t and 0 otherwise, and pop_d is d's population, set to 0 if d is in the same state as c. This measure changes over time as more states expand Medicaid and out-of-state communities are more or less exposed to the given states' expansion depending on their degree of social connectedness. I standardize *SocialExposure* as the z-score so that effects can be interpreted as the impact of having a 1 standard deviation stronger social connectedness to states that have expanded

Medicaid.

I estimate the effect of social exposure on outcomes Y for individual i in community c and year t as

$$Y_{ict} = \alpha + \beta Social Exposure_{c,t} + X'_{ict}\Gamma + \mu_c + \lambda_{s(c),t} + \varepsilon_{ict}.$$
(2)

The coefficient of interest, β , is the effect of a 1 standard deviation increase in the number of friends (scaled by the number of community residents) who experienced a state Medicaid expansion. X includes state specific controls for income. μ_c are community fixed effects, which absorb any unobserved time invariant characteristics that might be related to Y. $\lambda_{s(p),t}$ are state-by-year fixed effects, which make the comparison between communities within the same state and year and absorb any state-level shocks that might occur over time, such as state policy changes or economic conditions. Therefore, identification comes from within state differences in the community-level social exposure to Medicaid expansions over time; the comparison is between communities in non-expansion states with strong social ties to the expansion states versus communities in the same non-expansion state but with weaker ties to the expansion states, before versus after the expansions. The identifying assumption is that, in the absence of the state expansions, Medicaid enrollment in communities within the same non-expansion states would have evolved similar to each other despite their differing social connections to expansion states.

My treatment of interest in this case, *SocialExposure*, is a continuous measure. Recent research has highlighted the potential challenges and biases TWFE estimators with continuous measures can create (Callaway et al., 2024). To address these issues, I convert *SocialExposure* to a binary treatment. Specifically, I calculate the within-state median value of *SocialExposure* in 2018 and consider a community as treated if it surpasses this median value. Some states expanded Medicaid after 2014 and thus treatment is staggered over time. Recent advances in the DiD and event studies literature have called attention to the potential estimation biases that can result from such TWFE designs with staggered adoption (Callaway & Sant'Anna, 2021; de Chaisemartin & D'Haultfœuille, 2020; Goodman-Bacon, 2021; Roth et al., 2023; Sun & Abraham, 2021). In this setting the TWFE regression includes so called "forbidden comparisons" between already-treated units, in addition to desired comparisons between treated and not-yet-treated units. In the presence of treatment effect heterogeneity these comparisons can lead to miss-estimated treatment effect coefficients. Moreover, there could be heterogeneity in how the treatment evolves over time. I address these limitations by estimating dynamic treatment effects using the doubly-robust augmented inverse-probability weighting estimation procedures proposed in Callaway and Sant'Anna (2021). Their methodology decomposes the average treatment effect into a weighted average of group-time-specific treatment effects, which can then be aggregated to the average treatment effects on the treated (ATET) of interests.

3.3 Outcomes Data

3.3.1 American Community Survey

The main data source for Medicaid enrollment and other population characteristics is the Census Bureau's American Community Survey (ACS). The ACS provides a range of demographic and socioeconomic information for a large sample of respondents (about 3 million annually) representing the entire United States. Since 2008, the ACS has asked respondents about their health insurance coverage and source, including whether they are covered by Medicaid, which I use to define Medicaid enrollment.

I use two versions of the ACS data: ZIP code aggregates and microdata. For privacy reasons, the smallest geographic unit identified in the ACS microdata is a Public Use Microdata Area (PUMA). PUMAs are statistical geographic areas created by the Census to partition the United States into geographic areas that are as small as possible while containing enough people to avoid privacy and disclosure concerns. There are 2,378 PUMAs (2010 delineation), compared to 3,143 counties. Delineation of PUMAs occurs after each decennial census, and thus their boundaries can change every 10 years. PUMAs are created by the state data centers in partnership with state, local, and tribal organizations. PUMA boundaries are based on aggregations of census tracts and counties, are contained within states, fall within/outside metropolitan and micropolitan area boundaries wherever possible, and are informed by local knowledge. For smaller geographic units, data is only available as annually published tabulations for selected outcomes and populations. Moreover, due to the small geographic area, five years of data are pooled for each annual estimate. In short, the ACS ZIP code data provides higher geographic granularity than the microdata, allowing me to utilize the most detailed Social Connectedness Index data available, but it comes with the trade-off of less ability to customize the analysis sample and has lower temporal frequency than other potential options.

I use ACS ZIP code data obtained from IPUMS NHGIS (Manson et al., 2023). Since Medicaid enrollment is only published as ZIP code population counts for selected age groups, I scale Medicaid enrollment by the below 200% poverty line population rather than a true take-up rate. The ACS does publish *rates* of any insurance coverage for selected age groups and income levels; I use estimates of coverage rates for ages 18–64 with incomes under 200% and 138% of the poverty line. I use 2010 (2008–2012) and 2011 (2009–2013) data for a pre period, and I use 2016 (2014–2018) and 2017 (2015–2019) data for a post period.

To examine dynamic effects over time, assess potential pre-trends, and investigate effect heterogeniety by individual characteristics, I next turn to the ACS microdata, also obtained from IPUMS (Ruggles et al., 2023). The benefit is that the microdata are available annually for over 3 millions respondents with detailed demographic and economic information, allowing me to more precisely identify potential beneficiaries and explore differences by individual characteristics. The trade-off is that I sacrifice geographic granularity and instead aggregate ZIP code SCI to PUMAs. The PUMAs defined from the 2010 Census are used in the ACS data beginning in 2012, and for this reason most of the present analyses using ACS data start in 2012.

To identify the potentially eligible population I define income as a percent of the poverty line and other eligibility characteristics. I use the Federal Poverty Guidelines (FPG) issued by the Department of Health and Human Services rather than the poverty thresholds provided by the Census Bureau, since FPG is used for administrative purposes including determining Medicaid eligibility. The State Health Access Data Assistance Center constructs variables for calculating FPG for family unit definitions relevant for health insurance coverage, which can differ from the Census Bureau definitions used for calculating poverty statistics, and provide these modified FPG variables in the IPUMS ACS data. The ACS includes questions about "long lasting" functional limitations, which I use to define disabled as reporting limitations in self-care, independent living, basic ambulatory (e.g., walking, climbing stairs), or cognitive functioning, or severe vision or hearing limitations. The ACS does not include information about current pregnancy and so I do not attempt to identify this eligibility group. Finally, I exclude non-citizens who have lived in the U.S. for less than 10 years from the potentially eligible group, since they are not typically eligible.

Table A.1 shows summary statistics for the main analysis sample, comparing communities below and above their state's median level of social exposure, before and after the expansions. The populations are comparable along most dimensions. Higher social exposure PUMAs are more likely to be in metropolitan areas. Medicaid enrollment was initially lower in the above median PUMAs, but between 2012 and 2018 enrollment grew twice as much in the above median exposure PUMA, leaving them with higher enrollment by the end of the period.

3.3.2 California ZIP Codes Medicaid Enrollment

To explore social spillover effects from Medicaid expansions in a second setting, I use ZIP-code level monthly enrollment counts from California for 2010–2018.⁹ These data provide administrative counts of the number of people enrolled in Medicaid each month with an address in the given ZIP code. Compared to the survey data above, the administrative counts are less subject to measurement error due to misreporting and provide. The monthly ZIP code data also provides information at a more granular geographic and time level.

3.3.3 Cooperative Congressional Elections Study

To further explore effects on policy preferences and beliefs I utilize survey data from the Cooperative Congressional Elections Study (CCES) (Kuriwaki, 2023). The CCES is an annual, nationally representative survey of over 50,000 respondents. The dataset provides information on voter behavior, public opinion, and policy preferences. Since 2012, the CCES has included a question about whether the respondent supports Congress repealing the ACA. Although this questions does not directly ask about Medicaid, the expansions were a major component of the ACA and therefor respondents' support for the ACA is likely to be related to support for Medicaid expansion. I also use a few additional questions relating to preferences over Medicaid expansions and state spending, although these questions were only asked post-2014, meaning I do not have pre-treatment observations for comparison.

4 Results

Table 1 shows the baseline ZIP code-level results. Having one standard deviation higher strength of social connection to the Medicaid expansion states caused ZIP codes to experience a 1.5% increase in the scaled number of non-elderly adult (ages 18–64) Medicaid enrollees¹⁰

 $^{^{9} \}rm https://data.chhs.ca.gov/dataset/medi-cal-certified-eligible-counts-by-month-of-eligibility-zip-code-and-sex$

¹⁰ZIP code data from the American Community Survey is published as 5-year pooled estimates. I use data from the 2008-12, 2009-13, 2014-18, and 2015-19 periods. Since Medicaid enrollment is only published as ZIP code population counts for selected age groups, I scale Medicaid enrollment by the under 200% poverty

—even though eligibility was largely unchanged in their state—compared to other ZIP codes in the same state but with less strong social connection to the expansion states. I similarly estimate the insured rate among non-elderly adults under 200% and 138% of the poverty line increased by 0.37 percentage points (0.65% of the baseline mean) and 0.58 percentage points (1.1% of the baseline mean).

To examine dynamic effects over time, assess potential pre-trends, and investigate effect heterogeniety, I next turn to the ACS microdata (Ruggles et al., 2023). Table 2 shows low-income adults in PUMAs with stronger social connections to the Medicaid expanding states were more likely to enroll in Medicaid after the expansions compared to those in PUMAs in the same state but with less connection to the expansions. Specifically, a one standard deviation increase in friends per person in Medicaid expansion states increased the probability of take-up among potentially eligible low-income adults (parents and people with disabilities) by 0.7 percentage points.

A key identifying assumption is that communities with more social exposure had similar trends in Medicaid take-up as those with less social exposure and their paths would have evolved in parallel in the absence of the expansions. There could also be differences in effect over time after the event. Figure 5 shows results from the event study specification to examine these possibilities. I do not find evidence of differential pre-existing pre-trends, which is reassuring for the validity of the parallel trends assumption. There is also a sharp and fairly consistent increase after the event. As discussed in Section 3, TWFE regressions may be subject to biases in contexts with staggered treatment adoption timing or continuous treatment variables. Figure A.4 shows results are robust to these concerns by implementing the methods in Callaway and Sant'Anna (2021).

The changes could result from people who would otherwise not have any insurance, or there could be crowd out of other sources such as employer sponsored health insurance. Figure 6 shows estimates of the impacts of PUMA social exposure to Medicaid expansions on overall insurance and individual insurance sources among potentially Medicaid eligible low-income adults. I do not find effects on insurance sources including Medicare, other public, employer sponsored, and other private, and I find a positive effect on the probability of any insurance coverage that is similar in magnitude to the effect on Medicaid. This evidence is suggestive that the effects are drive by individuals gaining new coverage rather than switching coverage sources.

line population rather than a take-up rate. The ACS does publish rates of any insurance for selected age groups and income levels, which I use as additional outcomes.

4.1 The Role of Geographic Distance

Social connectedness is generally higher and more diverse in more urban areas, and thus there might be important differences in effect by urbanicity. Separating ZIP codes by urban and rural status I find similar effects and no evidence of heterogeneity (Table 3). Social connections are also strongly related to geographic proximity. I use two strategies to explore the role of distance. First, to examine the importance of living on the border of an expansion state, I estimate the impact of expansions comparing border ZIP codes to interior ones among all states sharing a border with an expansion state. I find border ZIP codes had 1 percentage point higher scaled enrollment after the expansions compared to interior ZIP codes (Table 4). Next, to assess the extent to which these border communities might drive results, I estimate regressions excluding ZIP codes within 50, 100, and 200 miles of an expansion state. I find the effect of social exposure to the Medicaid expansions remains even when only considering ZIP codes that are similarly far away from the expansion states.

4.2 Alternative Setting: California Medicaid Early Expansions

It could be the case that the spillover effects described so far are specific to the unique context of the ACA Medicaid expansions, which occurred along with other changes to the healthcare system. To test whether the effects generalize to other times, I turn to the California early Medicaid expansions. After the ACA was passed in 2010, a few states decided to expand their Medicaid edibility early in anticipation of the 2014 change. In California, this was implemented as a county roll-out. Some counties, such as the large Los Angeles county, expanded eligibility thresholds in 2011; nearly all counties had expanded by the end of 2012.

Using the same strategy as above, I compare California ZIP codes within the same county but with differential exposure to the expanding counties. I use the ZIP code-to-ZIP code Facebook SCI and monthly ZIP code level administrative enrollment counts to estimate an event study around the first set of expanding counties in 2011, comparing between neighborhoods with above vs below median social exposure. Figure A.5 shows the event study results for the impact on the log of enrollment counts. There do not appear to be differential pre-trends in the 12 months prior to the county expansions. For ZIP codes with above median exposure to the expanding counties, there is an immediate increase that grows over the following months to about a 1.5% increase the number enrolled, with some

evidence of the effect dissipating some about a year later. These results provide evidence that the social spillover impacts from expanding eligibility generalize to settings besides the unique context of the 2014 ACA expansion.

4.2.1 Alternative Social Connectedness Proxy: Birth State

Another validity concern is the possibility that contemporaneous, correlated shocks could occur at the local level. For example, if there were changes in Medicaid advertising around the time of the expansions, and those changes were not equally dispersed geographically in a state, then correlations between the locations of increased advertising and connectedness to expansion states could lead to violations of the identifying assumptions. To address this possibility, I next consider a different proxy for one's social network: their state of birth.

Instead of using the SCI as a proxy for social connectedness, which is defined at the local area level, I use an individual's state of birth. People born in a different state are more likely to have social connections to that state than other residents in their neighborhood not born in that state. I estimate this relationship as

$$Y_{ipt} = \alpha + \beta BirthStateExpanded_{s(i),t} + X'_{it}\Gamma + \mu_{p,s(i)} + \lambda_{p,t} + \varepsilon_{ipt}.$$
(3)

Now, the comparison is between people living within the same PUMA but born in expansion or non-expansion states, before and after their birth states expanded. The identifying assumption is that individuals living within the same PUMA would have the same evolution of Medicaid take-up over time in the absence of the expansions. Local, time-varying shocks that impact Medicaid enrollment will not violate the identifying assumptions as long as the shocks do not differentially impact people from different birth states living in that PUMA.

Table 5 shows the impact of one's birth-state expanding Medicaid on their own probability of enrollment. The probability of Medicaid enrollment increases by 0.6–0.8 percentage points after a potentially eligible adult's birth-state expanded. These results are in the same range of magnitudes as the baseline results, although the variables are not directly comparable.

4.3 Policy Preferences and Beliefs

To further shed light on how the Medicaid experience's of one's friends might change their own knowledge and behaviors, I next turn to examine effects on individual's policy preferences. The effects of social network exposure on knowledge and preferences may not confined to just those potentially eligible for the program—having friends enrolled in Medicaid could alter policy opinions even for non-eligible adults, potentially changing public approval of the program and, in turn, influencing its future operation and sustainability. Theories of public program approval often depend on the perceived deservedness of beneficiaries (Gilens, 2000). More stringent criteria might correlate with higher approval, particularly for populations not typically viewed as deserving, by ensuring that only the "truly needy" benefit. However, it's not clear that this is generally the case; the relationship between eligibility and approval likely hinges on the social construction of the beneficiary population and the nature of the benefits provided by the program. For example, healthcare might be perceived as a different kind of benefit compared to supplemental income, each carrying its own set of social and moral evaluations (Jensen & Petersen, 2017). The act of expanding eligibility also inherently alters the social construction of the program's beneficiaries. Including individuals with higher socioeconomic status (SES) might dilute the prevailing stereotypes and perceptions about the "typical" beneficiary.

I estimate policy preference responses using data from the Cooperative Congressional Elections Study (CCES). Since 2012, the CCES has included a question about whether the respondent supports Congress repealing the ACA. Although not directly a question about Medicaid, expansion was one of the major and most prominent components of the legislation, and so overall support for the ACA is likely to be related to and affected by support for the Medicaid expansions. Using the county-level SCI and the same identification strategy as above, I find that counties with one standard deviation more friends per person in non-expansion states exhibited a 2 percentage point increase in support for the ACA.

In a second specification using ZIP code-level SCI, I compare differences between neighborhoods within the same county and year but with differing social exposure and find similar effects. In similar analyses using alternative healthcare policy questions but without the benefit of a pre-period for comparison, I find ZIP codes with one standard deviation higher social exposure were more likely to support their own state expanding Medicaid (4.6 percentage point increase) and increasing healthcare spending (2.2 percentage point increase), whereas I do not find a statistically significant difference in preferences for welfare spending. These results suggest the effects are driven by specifically healthcare related policy

preferences.

5 Conclusion

The results highlight the important dynamics of how geographically dispersed social networks can influence local public benefits participation, particularly in the digital age where social ties are not confined by physical proximity or boundaries. The findings also suggest that policy changes in one jurisdiction can have ripple effects beyond its physical borders, influenced by the intricate web of social connections. Policymakers may need to recognize and account for these broader social influences when designing and implementing public programs. Considering such unforeseen spillovers can lead to more effective policy design and better-informed expectations about program outcomes.

The findings also contribute to our understanding of previously documented "woodwork effects" in Medicaid claiming and suggests increased information about the program was indeed an important mechanism. This is in contrast to previous work, which could not distinguish between social information channels and changes in administration of the program. Future work could delve further into understanding these mechanisms. For example, within the category of social influences, there could be effects from changes in information about program eligibility and applications, or it could be there are changes in social stigma and people's comfort with enrolling.

Finally, the estimated effects on policy preferences suggest the social spillover effects from the Medicaid expansions might have spread beyond just the people eligible to use the program. Future work further exploring how expansions in program eligibility impact population-level program approval would be valuable for understanding the political economy dynamics of how programs are adopted and spread across jurisdictions.

References

- Aizer, A. (2003). Low Take-Up in Medicaid: Does Outreach Matter and for Whom? American Economic Review, 93(2), 238–241. https://doi.org/10.1257/000282803321947119
- Aizer, A. (2007). Public Health Insurance, Program Take-Up, and Child Health. The Review of Economics and Statistics, 89(3), 400–415. https://doi.org/10.1162/rest.89.3.400

- Aizer, A., & Currie, J. (2004). Networks or neighborhoods? Correlations in the use of publicly-funded maternity care in California. *Journal of Public Economics*, 88(12), 2573–2585. https://doi.org/10.1016/j.jpubeco.2003.09.003
- Anders, J., & Rafkin, C. (2022). The Welfare Effects of Eligibility Expansions: Theory and Evidence from SNAP. https://doi.org/10.2139/ssrn.4140433
- Baicker, K., Congdon, W. J., & Mullainathan, S. (2012). Health Insurance Coverage and Take-Up: Lessons from Behavioral Economics. *The Milbank Quarterly*, 90(1), 107– 134. https://doi.org/10.1111/j.1468-0009.2011.00656.x
- Baicker, K., Taubman, S. L., Allen, H. L., Bernstein, M., Gruber, J. H., Newhouse, J. P., Schneider, E. C., Wright, B. J., Zaslavsky, A. M., & Finkelstein, A. N. (2013). The Oregon Experiment — Effects of Medicaid on Clinical Outcomes. New England Journal of Medicine, 368(18), 1713–1722. https://doi.org/10.1056/NEJMSA1212321
- Bailey, M., Cao, R., Kuchler, T., Stroebel, J., & Wong, A. (2018). Social Connectedness: Measurement, Determinants, and Effects. *Journal of Economic Perspectives*, 32(3), 259–80. https://doi.org/10.1257/JEP.32.3.259
- Bailey, M., Cao, R., Kuchler, T., & Stroebel, J. (2018). The Economic Effects of Social Networks: Evidence from the Housing Market. Journal of Political Economy, 126(6), 2224–2276. https://doi.org/10.1086/700073
- Bailey, M., Dávila, E., Kuchler, T., & Stroebel, J. (2019). House Price Beliefs And Mortgage Leverage Choice. The Review of Economic Studies, 86(6), 2403–2452. https://doi. org/10.1093/restud/rdy068
- Bansak, C., & Raphael, S. (2007). The effects of state policy design features on take-up and crowd-out rates for the state children's health insurance program. *Journal of Policy Analysis and Management*, 26(1), 149–175. https://doi.org/10.1002/pam.20231
- Bertrand, M., Luttmer, E. F. P., & Mullainathan, S. (2000). Network Effects and Welfare Cultures. Quarterly Journal of Economics, 115(3).
- Bhargava, S., & Manoli, D. (2015). Psychological Frictions and the Incomplete Take-Up of Social Benefits: Evidence from an IRS Field Experiment. American Economic Review, 105(11), 3489–3529. https://doi.org/10.1257/aer.20121493
- Blumberg, L. J., Holahan, J., Karpman, M., & Elmendorf, C. (2018). Characteristics of the Remaining Uninsured: An Update. Urban Institute. Washington, D.C. Retrieved August 3, 2023, from https://www.urban.org/sites/default/files/publication/98764/ 2001914-characteristics-of-the-remaining-uninsured-an-update_2.pdf
- Brantley, E., & Rosenbaum, S. (2021). Ballot Initiatives Have Brought Medicaid Eligibility To Many But Cannot Solve The Coverage Gap. Health Affairs Blog. Retrieved February

20, 2023, from https://www.healthaffairs.org/do/10.1377/forefront.20210617.992286/full/

- Buchmueller, T., Ham, J. C., & Shore-Sheppard, L. D. (2016). The Medicaid Program. Economics of Means-Tested Transfer Programs in the United States, Volume I. University of Chicago Press. https://doi.org/10.7208/chicago/9780226370507.003.0002
- Callaway, B., Goodman-Bacon, A., & Sant'Anna, P. H. C. (2024, February). Difference-indifferences with a Continuous Treatment. 32117. https://doi.org/10.3386/w32117
- Callaway, B., & Sant'Anna, P. H. (2021). Difference-in-Differences with multiple time periods. Journal of Econometrics, 225(2), 200–230. https://doi.org/10.1016/J. JECONOM.2020.12.001
- Chetty, R., Friedman, J. N., & Saez, E. (2013). Using Differences in Knowledge across Neighborhoods to Uncover the Impacts of the EITC on Earnings. American Economic Review, 103(7), 2683–2721. https://doi.org/10.1257/aer.103.7.2683
- Courtemanche, C., Marton, J., Ukert, B., Yelowitz, A., & Zapata, D. (2017). Early Impacts of the Affordable Care Act on Health Insurance Coverage in Medicaid Expansion and Non-Expansion States. *Journal of Policy Analysis and Management*, 36(1), 178–210. https://doi.org/10.1002/pam.21961
- Currie, J., Decker, S., & Lin, W. (2008). Has public health insurance for older children reduced disparities in access to care and health outcomes? *Journal of Health Economics*, 27(6), 1567–1581. https://doi.org/10.1016/j.jhealeco.2008.07.002
- Currie, J., & Duque, V. (2019). Medicaid: What Does It Do, and Can We Do It Better? Annals of the American Academy of Political and Social Science, 686(1), 148–179. https://doi.org/10.1177/0002716219874772
- Dahl, G. B., Kostøl, A. R., & Mogstad, M. (2014). Family Welfare Cultures. The Quarterly Journal of Economics, 129(4), 1711–1752. https://doi.org/10.1093/qje/qju019
- Dahl, G. B., Løken, K. V., & Mogstad, M. (2014). Peer Effects in Program Participation. American Economic Review, 104(7), 2049–2074. https://doi.org/10.1257/aer.104.7. 2049
- de Chaisemartin, C., & D'Haultfœuille, X. (2020). Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects. American Economic Review, 110(9), 2964–96. https: //doi.org/10.1257/AER.20181169
- Decker, S. L., Abdus, S., & Lipton, B. J. (2022). Eligibility for and Enrollment in Medicaid Among Nonelderly Adults After Implementation of the Affordable Care Act. Medical care research and review: MCRR, 79(1), 125–132. https://doi.org/10.1177/ 1077558721996851

- DellaVigna, S., & Kim, W. (2022, June). Policy Diffusion and Polarization across U.S. States. 30142. https://doi.org/10.3386/w30142
- Donohue, J. M., Cole, E. S., James, C. V., Jarlenski, M., Michener, J. D., & Roberts, E. T. (2022). The US Medicaid Program: Coverage, Financing, Reforms, and Implications for Health Equity. JAMA, 328(11), 1085–1099. https://doi.org/10.1001/jama.2022. 14791
- Ericson, K. M., Layton, T. J., McIntyre, A., & Sacarny, A. (2023, January). Reducing Administrative Barriers Increases Take-up of Subsidized Health Insurance Coverage: Evidence from a Field Experiment. 30885. https://doi.org/10.3386/w30885
- Finkelstein, A., & Notowidigdo, M. J. (2019). Take-Up and Targeting: Experimental Evidence from SNAP*. The Quarterly Journal of Economics, 134(3), 1505–1556. https: //doi.org/10.1093/qje/qjz013
- Flores, G., Lin, H., Walker, C., Lee, M., Portillo, A., Henry, M., Fierro, M., & Massey, K. (2016). A cross-sectional study of parental awareness of and reasons for lack of health insurance among minority children, and the impact on health, access to care, and unmet needs. *International Journal for Equity in Health*, 15, 44. https://doi.org/10. 1186/s12939-016-0331-y
- Fox, A. M., Stazyk, E. C., & Feng, W. (2020). Administrative Easing: Rule Reduction and Medicaid Enrollment. Public Administration Review, 80(1), 104–117. https://doi. org/10.1111/puar.13131
- Frean, M., Gruber, J., & Sommers, B. D. (2017). Premium subsidies, the mandate, and Medicaid expansion: Coverage effects of the Affordable Care Act. Journal of Health Economics, 53, 72–86. https://doi.org/10.1016/j.jhealeco.2017.02.004
- Gilens, M. (2000, October). Why Americans Hate Welfare: Race, Media, and the Politics of Antipoverty Policy. University of Chicago Press. Retrieved October 3, 2023, from https://press.uchicago.edu/ucp/books/book/chicago/W/bo3633527.html
- Goodman-Bacon, A. (2021). Difference-in-differences with variation in treatment timing. Journal of Econometrics. https://doi.org/10.1016/J.JECONOM.2021.03.014
- Gray, V. (1973). Innovation in the States: A Diffusion Study. American Political Science Review, 67(4), 1174–1185. https://doi.org/10.2307/1956539
- Grossman, D., & Khalil, U. (2020). Neighborhood networks and program participation. Journal of Health Economics, 70, 102257. https://doi.org/10.1016/j.jhealeco. 2019.102257
- Haley, J. M., & Wengle, E. (2021). Many Uninsured Adults Have Not Tried to Enroll in Medicaid or Marketplace Coverage. Urban Institute. Washington, D.C.

- Hamersma, S., Kim, M., & Timpe, B. (2019). The Effect of Parental Medicaid Expansions on Children's Health Insurance Coverage. *Contemporary Economic Policy*, 37(2), 297–311. https://doi.org/10.1111/coep.12392
- Heckman, J., & Smith, J. (2004). The determinants of participation in a social program: Evidence from a prototypical job training program. *Journal of Labor Economics*, 22(2), 243–298. https://doi.org/10.1086/381250
- Hu, L., Kaestner, R., Mazumder, B., Miller, S., & Wong, A. (2018). The effect of the affordable care act Medicaid expansions on financial wellbeing. *Journal of Public Economics*, 163, 99–112. https://doi.org/10.1016/J.JPUBECO.2018.04.009
- Hu, Z. (2022). Social interactions and households' flood insurance decisions. Journal of Financial Economics, 144 (2), 414–432. https://doi.org/10.1016/j.jfineco.2022.02.004
- Hudson, J. L., & Moriya, A. S. (2017). Medicaid Expansion For Adults Had Measurable 'Welcome Mat' Effects On Their Children. *Health Affairs (Project Hope)*, 36(9), 1643– 1651. https://doi.org/10.1377/hlthaff.2017.0347
- Janssens, J., & Van Mechelen, N. (2022). To take or not to take? An overview of the factors contributing to the non-take-up of public provisions. *European Journal of Social Security*, 24(2), 95–116. https://doi.org/10.1177/13882627221106800
- Jensen, C., & Petersen, M. B. (2017). The Deservingness Heuristic and the Politics of Health Care. American Journal of Political Science, 61(1), 68–83. https://doi.org/10.1111/ ajps.12251
- Kaiser Family Foundation. (2017). *Medicaid's Role in Nursing Home Care*. Kaiser Family Foundation. Retrieved August 13, 2023, from https://www.kff.org/infographic/medicaids-role-in-nursing-home-care/
- Kaiser Family Foundation. (2023). Status of State Medicaid Expansion Decisions. Kaiser Family Foundation. Retrieved August 13, 2023, from https://www.kff.org/medicaid/ issue-brief/status-of-state-medicaid-expansion-decisions-interactive-map/
- Keiser, L. R., & Miller, S. M. (2020). Does Administrative Burden Influence Public Support for Government Programs? Evidence from a Survey Experiment. *Public Administration Review*, 80(1), 137–150. https://doi.org/10.1111/puar.13133
- Kenney, G. M., Haley, J. M., Anderson, N., & Lynch, V. (2015). Children Eligible for Medicaid or CHIP: Who Remains Uninsured, and Why? Academic Pediatrics, 15, S36–43. https://doi.org/10.1016/j.acap.2015.01.009
- Kenney, G. M., Haley, J. M., Pan, C., Lynch, V., & Buettgens, M. (2015). Medicaid/CHIP Participation Rates Rose among Children and Parents in 2015. Urban Institute.
- Kenney, G. M., Lynch, V., Haley, J., & Huntress, M. (2012). Variation in Medicaid Eligibility and Participation among Adults: Implications for the Affordable Care Act. *INQUIRY*:

The Journal of Health Care Organization, Provision, and Financing, 49(3), 231–253. https://doi.org/10.5034/inquiryjrnl_49.03.08

- Ko, W., & Moffitt, R. A. (2022, June). Take-up of Social Benefits. 30148. https://doi.org/ 10.3386/w30148
- Kuchler, T., & Stroebel, J. (2021). Social Finance. Annual Review of Financial Economics, 13(1), 37–55. https://doi.org/10.1146/annurev-financial-101320-062446
- Kuriwaki, S. (2023, May 12). Cumulative CES Common Content (Version 8). Harvard Dataverse. https://doi.org/10.7910/DVN/II2DB6
- Linos, K. (2013, April 29). The Democratic Foundations of Policy Diffusion: How Health, Family, and Employment Laws Spread Across Countries. Oxford University Press.
- Manski, C. F. (1993). Identification of Endogenous Social Effects: The Reflection Problem. The Review of Economic Studies, 60(3), 531–542. https://doi.org/10.2307/2298123
- Manson, S., Schroeder, J., Van Riper, D., Knowles, K., Kugler, T., Roberts, F., & Ruggles, S. (2023). *IPUMS National Historical Geographic Information System: Version 18.0* [dataset] (Version 18.0). Minneapolis, MN, IPUMS. https://doi.org/10.18128/D050. V18.0
- Miller, S., Hu, L., Kaestner, R., Mazumder, B., & Wong, A. (2021). The ACA Medicaid Expansion in Michigan and Financial Health. *Journal of Policy Analysis and Man*agement, 40(2), 348–375. https://doi.org/10.1002/PAM.22266
- Miller, S., Johnson, N., & Wherry, L. R. (2021). Medicaid and Mortality: New Evidence From Linked Survey and Administrative Data. The Quarterly Journal of Economics, 136(3), 1783–1829. https://doi.org/10.1093/QJE/QJAB004
- Miller, S., & Wherry, L. R. (2019). Four Years Later: Insurance Coverage and Access to Care Continue to Diverge between ACA Medicaid Expansion and Non-Expansion States. AEA Papers and Proceedings, 109, 327–333. https://doi.org/10.1257/pandp.20191046
- Moffitt, R. (1983). An Economic Model of Welfare Stigma. American Economic Review, 73(5), 1023–1035.
- Murray, S. (2009). States Resist Medicaid Growth; Governors Fear For Their Budgets [news-paper]. The Washington Post: A SECTION, A.1. Retrieved August 21, 2023, from https://www.proquest.com/docview/410314845/abstract/874EBEDAED9A4A6BPQ/ 1
- Nicholson-Crotty, J., Miller, S. M., & Keiser, L. R. (2021). Administrative burden, social construction, and public support for government programs. *Journal of Behavioral Public Administration*, 4(1). https://doi.org/10.30636/jbpa.41.193

- Roth, J., Sant'Anna, P. H. C., Bilinski, A., & Poe, J. (2023). What's trending in differencein-differences? A synthesis of the recent econometrics literature. *Journal of Econometrics*. https://doi.org/10.1016/j.jeconom.2023.03.008
- Ruggles, S., Flood, S., Sobek, M., Backman, D., Chen, A., Cooper, G., Richards, S., Rodgers,
 R., & Schouweiler, M. (2023). *IPUMS USA: Version 14.0 [dataset]* (Version 14.0).
 Minneapolis, MN, IPUMS. https://doi.org/10.18128/D010.V13.0
- Sacarny, A., Baicker, K., & Finkelstein, A. (2022). Out of the Woodwork: Enrollment Spillovers in the Oregon Health Insurance Experiment. American Economic Journal: Economic Policy, 14(3), 273–295. https://doi.org/10.1257/pol.20200172
- Shigeoka, H., & Watanabe, Y. (2023, July). Policy Diffusion Through Elections. 31441. https://doi.org/10.3386/w31441
- Shipan, C. R., & Volden, C. (2008). The Mechanisms of Policy Diffusion. American Journal of Political Science, 52(4), 840–857. Retrieved July 18, 2023, from https://www. jstor.org/stable/25193853
- Sommers, B., Arntson, E., Kenney, G., & Epstein, A. (2013). Lessons from Early Medicaid Expansions Under Health Reform: Interviews with Medicaid Officials. *Medicare & Medicaid Research Review*, 3(4), E1–E23. https://doi.org/10.5600/mmrr.003.04.a02
- Sommers, B. D. (2017). State medicaid expansions and mortality, revisited: A cost-benefit analysis. American Journal of Health Economics, 3(3), 392–421. https://doi.org/10. 1162/ajhe_a_00080
- Sommers, B. D., Tomasi, M. R., Swartz, K., & Epstein, A. M. (2012). Reasons For The Wide Variation In Medicaid Participation Rates Among States Hold Lessons For Coverage Expansion In 2014. *Health Affairs*, 31(5), 909–919. https://doi.org/10.1377/hlthaff. 2011.0977
- Sonier, J., Boudreaux, M. H., & Blewett, L. A. (2013). Medicaid 'welcome-mat' effect of Affordable Care Act implementation could be substantial. *Health Affairs (Project Hope)*, 32(7), 1319–1325. https://doi.org/10.1377/hlthaff.2013.0360
- Stanton, J. (2009, September 17). GOP Senators, Governors Fear Health Care Burden on States. Roll Call. Retrieved August 21, 2023, from https://www.rollcall.com/2009/ 09/17/gop-senators-governors-fear-health-care-burden-on-states/
- Stuber, J., & Schlesinger, M. (2006). Sources of stigma for means-tested government programs. Social Science & Medicine, 63(4), 933–945. https://doi.org/10.1016/j. socscimed.2006.01.012
- Stuber, J. P., Maloy, K. A., Rosenbaum, S., & Jones, K. C. (2000). Beyond Stigma: What Barriers Actually Affect the Decisions of Low-Income Families to Enroll in Medicaid?

The George Washington University. Washington, D.C. http://hsrc.himmelfarb.gwu.edu/sphhs_policy_briefs/53

- Sun, L., & Abraham, S. (2021). Estimating dynamic treatment effects in event studies with heterogeneous treatment effects. *Journal of Econometrics*, 225(2), 175–199. https: //doi.org/10.1016/j.jeconom.2020.09.006
- Truffer, C. J., Klemm, J. D., Wolfe, C. J., & Rennie, K. E. (2010). 2010 Actuarial Report on the Financial Outlook for Medicaid. U.S. Department of Health & Human Services. Washington, D.C. Retrieved April 7, 2024, from https://www.cms.gov/Research-Statistics-Data-and-Systems/Research/ActuarialStudies/downloads/MedicaidReport2010.pdf
- Walker, J. L. (1969). The Diffusion of Innovations among the American States. American Political Science Review, 63(3), 880–899. https://doi.org/10.2307/1954434
- Wherry, L. R., & Miller, S. (2016). Early Coverage, Access, Utilization, and Health Effects of the Affordable Care Act Medicaid Expansions: A Quasi-Experimental Study. Annals of internal medicine, 164(12), 795–803. https://doi.org/10.7326/M15-2234
- Williams, E., Rudowitz, R., & Published, A. B. (2023, April 13). Medicaid Financing: The Basics. Kaiser Family Foundation. Retrieved April 8, 2024, from https://www.kff. org/medicaid/issue-brief/medicaid-financing-the-basics/
- Wilson, R. (2022). The Impact of Social Networks on EITC Claiming Behavior. *The Review* of Economics and Statistics, 104(5), 929–945. https://doi.org/10.1162/rest_a_00995
- Wright, B. J., Garcia-Alexander, G., Weller, M. A., & Baicker, K. (2017). Low-Cost Behavioral Nudges Increase Medicaid Take-Up Among Eligible Residents Of Oregon. *Health* Affairs, 36(5), 838–845. https://doi.org/10.1377/hlthaff.2016.1325
- Wyse, A., & Meyer, B. D. (2023). Saved by Medicaid: New Evidence on Health Insurance and Mortality from the Universe of Low-Income Adults.

6 Figures

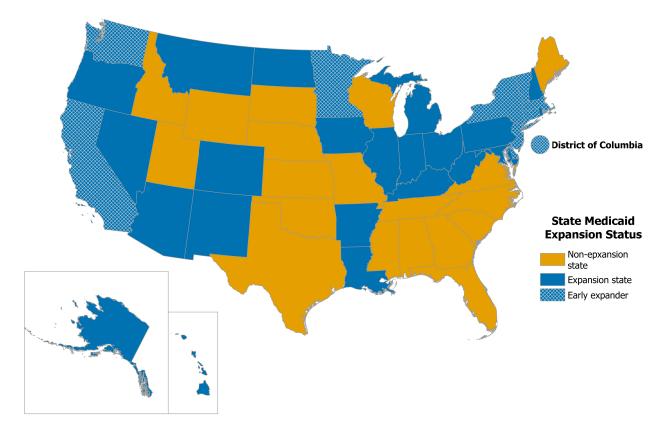


Figure 1: States' ACA Medicaid expansion status in 2018

Notes: This map shows states' Medicaid expansion status—extending eligibility to all low-income (<138% poverty) adults under the Affordable Care Act (ACA)—as of 2018. States with Medicaid programs that covered all low-income adults before the 2014 ACA expansions are defined as already expanded. Data come from the Kaiser Family Foundation (Kaiser Family Foundation, 2023) and are supplemented with additional state information. Five states (California, Connecticut, Minnesota, New Jersey, Washington) and the District of Columbia implemented early expansions in 2010–2011. California implemented a staggered adoption across counties during 2011–2012. The early expansions in New Jersey and Washington did not add new enrollment (Sommers et al., 2013) and so they are defined as 2014 expanders in the main analyses. Four states already had Medicaid programs that broadly covered low-income adults before passage of the ACA and are included as early expanders: Delaware since 1996, Massachusetts since 2006, New York since 2001, and Vermont since 2000. Nine states expanded Medicaid between 2019 and 2023: Maine and Virginia in 2019; Idaho, Nebraska, and Utah in 2020; Missouri and Oklahoma in 2021; and North Carolina and South Dakota in 2023.

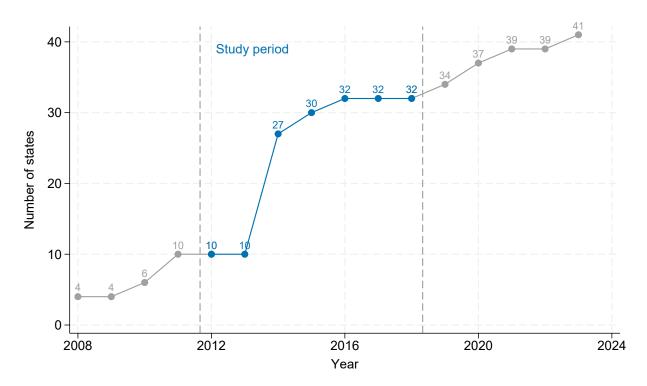


Figure 2: Trend in number of states with expanded Medicaid

Notes: This figure shows the trend in the number of states that had expanded Medicaid to cover all low-income adults. Pre-ACA and early expansion states are described in the notes to Figure 1. Dashed lines delineate the beginning and end of the study period.

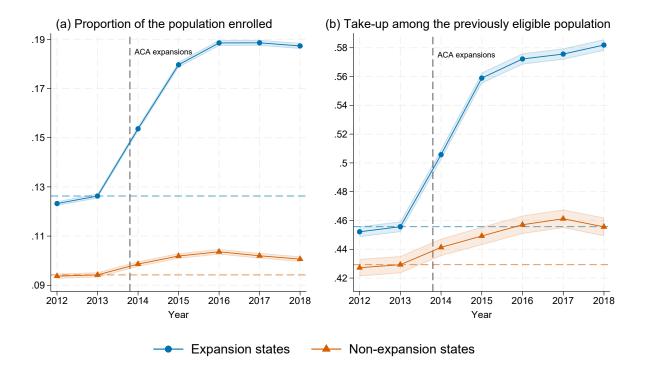
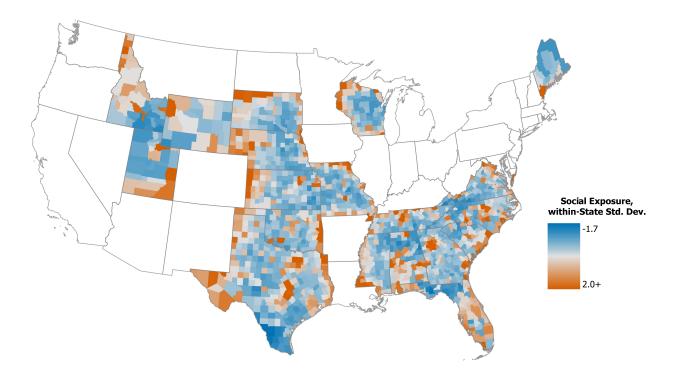


Figure 3: Medicaid enrollment trends among adults ages 18-64

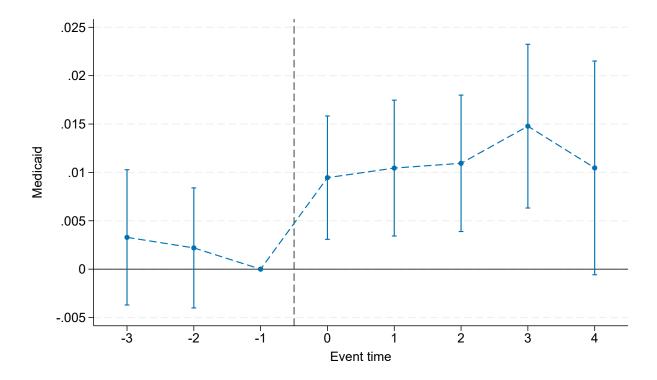
Notes: This figure shows trends in (a) the proportion of all adults ages 18–64 enrolled in Medicaid; and (b) the proportion of previously eligible adults enrolled in Medicaid. Previously eligible defined based on 2013 eligibility thresholds according to Kaiser Family Foundation data. Proportions estimated using American Community Survey (ACS) annual person-level weights, with 95% confidence intervals adjusted for the ACS complex sample design.

Figure 4: Within-state variation in county-level social connectedness to Medicaid expansion states



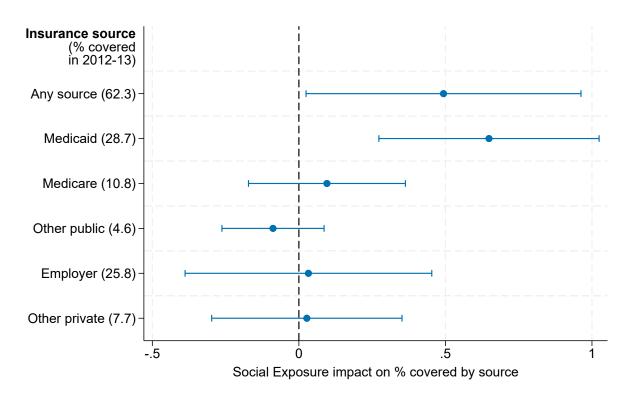
Notes: This figure shows county social connectedness to Medicaid expansion states, standardized within each state. ZIP code-level and PUMA level Social Exposure maps shown in Figure A.2 and Figure A.3, respectively.

Figure 5: Event study for impact of above-median social exposure to Medicaid expansions on insurance coverage in non-expansion states, potentially eligible adults ages 18-64 in 2012-2018



Notes: This figure shows an event study of the time varying impact of having high social exposure to the Medicaid expansions. Sample includes adults ages 18–64 with family income below 200% of the poverty line and are parents or people reporting a disability. Standard errors are clustered at the PUMA level.

Figure 6: Social Exposure impact on health insurance coverage by source, potentially eligible adults ages 18–64 in non-expansion states, 2012–2018



Notes: This figure shows the effect of a standard deviation increase in social exposure on the probability of being covered by each source of insurance. Sample includes adults ages 18–64 with family income below 200% and are parents or people reporting a disability. Standard errors clustered at the PUMA level. All regressions include state-year fixed effects, PUMA fixed effects, and state specific controls for family income as a percent of the FPG.

7 Tables

	Medicaid	Insured rate (%), by income:
	Scaled enrollment $(\%)$	${<}200\%$ pov.	${<}138\%$ pov.
	(1)	(2)	(3)
Social Exposure	0.390***	0.373***	0.577***
	(0.120)	(0.127)	(0.147)
ZIP code fixed effects	Y	Y	Y
State \times year fixed effects	Υ	Υ	Υ
ZIP code controls	Υ	Υ	Υ
Outcome mean at baseline	25.841	57.505	54.271
ZIP codes	$8,\!691$	$8,\!671$	8,664
ZIP code-year observations	34,764	$34,\!647$	$34,\!580$

Table 1: Effect of Social Exposure to Medicaid expansions on local adult Medicaid enrollment, ZIP codes in non-expansion states in 2010–2011 and 2016–2017

Notes: * p < .10, ** p < .05, *** p < .01. Standard errors (in parentheses) clustered at the ZIP code level. Social Exposure is standardized as the z-score and therefore results should be interpreted as the effect of a one standard deviation increase in Social Exposure. Each ZIP code-year observation is based on American Community Survey (ACS) 5-year pooled estimates, accessed through IPUMS NHGIS (Manson et al., 2023). Log(enrollment) is the natural logarithm of the total number of adults ages 18–64 enrolled in Medicaid living in the ZIP code. Scaled enrollment is the total enrollment divided by the number of adults ages 18–64 with income under 200% of the poverty line, multiplied by 100. Insured rate is the ACS estimated percent of adults ages 18–64 with incomes under 200% and 138% of the poverty line who have any health insurance coverage.

Table 2: Effect of Social Exposure to Medicaid expansions on probability of Medicaid enrollment, low-income adults ages 18–64 in non-expansion states, 2012–2018

	P(Medicaid enrolled) among:			
	All adults Potential eligible (1) (2)		Non-eligibles (3)	
Social Exposure	0.0037**	0.0065***	0.0013	
	(0.0016)	(0.0023)	(0.0019)	
PUMA fixed effects	Y	Y	Y	
State-year fixed effects	Υ	Y	Υ	
Individual controls	Υ	Y	Υ	
Outcome mean in 2012-13	0.1860	0.2829	0.0923	
Number of PUMAs	911	911	911	
Number of observations	$2,\!035,\!629$	$967,\!285$	1,068,344	

Notes: * p < .10, ** p < .05, *** p < .01. Standard errors (in parentheses) clustered at the PUMA level. Social Exposure is standardized as the z-score and therefore results should be interpreted as the effect of a one standard deviation increase in Social Exposure. Sample includes adults ages 18–64 with family income below 200% of the Federal Poverty Guideline (FPG). Potential eligibles includes parents and people reporting a disability; non-eligibles are childless adults not reporting a disability. Income controls includes state specific controls for family income as a percent of the FPG.

Table 3: Heterogeneity in Social Exposure impact on Medicaid
enrollment by rural status, ZIP codes in non-expansion states in
2010–2011 and 2016–2017

	Scaled Medicaid enrollment, among:		
	All	Rural	Urban
	(1)	(2)	(3)
Social Exposure	0.388***	0.521**	0.375**
	(0.119)	(0.233)	(0.162)
Rural \times Social Exposure	-0.021		
	(0.138)		
ZIP code fixed effects	Y	Y	Y
State \times year fixed effects	Υ	Υ	Υ
ZIP code controls	Y	Υ	Υ
Outcome mean at baseline	25.841	30.434	23.901
ZIP codes	$8,\!691$	$5,\!434$	$3,\!257$
ZIP code-year observations	34,764	21,736	$13,\!028$

Notes: * p < .10, ** p < .05, *** p < .01. Standard errors (in parentheses) clustered at the ZIP code level. Social Exposure is standardized as the z-score and therefore results should be interpreted as the effect of a one standard deviation increase in Social Exposure. Each ZIP codeyear observation is based on American Community Survey (ACS) 5-year pooled estimates, accessed through IPUMS NHGIS (Manson et al., 2023). Scaled enrollment is the total enrollment divided by the number of adults ages 18–64 with income under 200% of the poverty line, multiplied by 100.

	Effect on scaled Medicaid enrollment by ZIP codes distance to nearest expansion state:				
	>50 miles (1)	>100 miles (2)	>200 miles (3)	Border states (4)	
Social Exposure	$\begin{array}{c} 0.429^{***} \\ (0.159) \end{array}$	0.399^{**} (0.162)	0.403^{*} (0.231)		
Border ZIP				1.022^{**} (0.399)	
ZIP codes ZIP code-time observations	6,818 27,272	$5,169 \\ 20,676$	$2,365 \\ 9,460$	5,606 22,424	

Table 4: The role of distance in social exposure effects, age 18–64 Medicaid enrollment in non-expansion ZIP codes

Notes: * p < .10, ** p < .05, *** p < .01. Standard errors (in parentheses) clustered at the ZIP code level. Each column includes only ZIP codes within the given distance restriction to the nearest Medicaid expansion state (e.g., column (1) includes only ZIP codes at least 50 miles away from an expansion state). Border states excludes the five states that do not share a border with an expansion state (Alabama, Florida, Georgia, North Carolina, South Carolina). Social Exposure is standardized as the z-score with respect to the total sample of non-expansion state, among border states (<38 miles). Each ZIP code-year observation is based on American Community Survey (ACS) 5-year pooled estimates.

Table 5: Effect of birth state expanding Medicaid on own probability of Medicaid enrollment, low-income adults ages 18–64 in non-expansion states, 2012–2018

	Probability enrolled in Medicai	
	(1)	(2)
Birth state expanded Medicaid	0.0063**	0.0083**
-	(0.0028)	(0.0034)
Individual controls	Y	Y
PUMA-treatment group fixed effects	Υ	Υ
PUMA-year fixed effects	Υ	Υ
Restrict to those born in other U.S. state		Υ
Outcome mean in 2012-13	0.2872	0.2331
Number of PUMAs	911	911
Number of observations	$967,\!285$	$282,\!028$

Notes: * p < .10, ** p < .05, *** p < .01. Standard errors (in parentheses) clustered at the PUMA level. Sample includes adults ages 18–64 with family income below 200% of the Federal Poverty Guideline (FPG). Individual controls include state specific controls for family income as a percent of the FPG and an indicator for whether the individual moved into the state in the past year. Treatment groups include (1) born in-state, (2) born out-of-state in a non-expansion state, (3) born outside the U.S., (4) born in an early expansion state, (5) born in a 2014 expansion state, (6) born in a 2015 expansion state, and (7) born in a 2016 expansion state. Table 6: Effect of social exposure to Medicaid expansions on support for the Affordable Care Act, American adults in non-expansion states, 2012-2018

	Pr(Support the ACA)			
	(1)	(2)	(3)	
Social Exposure (county)	0.022**	0.003		
	(0.009)	(0.012)		
Social Exposure (ZIP code)		0.019***	0.020***	
		(0.005)	(0.005)	
Individual controls	Y	Y	Y	
County fixed effects	Υ	Υ		
State-year fixed effects	Υ	Υ		
County-year fixed effects			Υ	
Outcome mean	0.454	0.454	0.454	
R-squared	0.269	0.268	0.314	
Number of counties	1,500	$1,\!392$	$1,\!358$	
Number of observations	$136,\!983$	$134,\!397$	$132,\!408$	

Notes: *** p < .01, ** p < .05, * p < .10. Standard errors (in parentheses) clustered at the county level. Individual controls include age, sex, race and ethnicity, education, marital status, parental status, household income, health insurance status, and political party. Column (2) drops observations missing ZIP codes or ZIP code level exposure, and column (3) drops observations due to insufficient observations in some counties.

	Respondent supports their state:			
	Expand Medicaid	Increase healthcare spend	Increase welfare spend	
	(1)	(2)	(3)	
Soc Exp change (ZIP)	0.046***	0.022**	0.012	
	(0.017)	(0.010)	(0.007)	
County-year FEs	Y	Y	Υ	
Individual controls	Υ	Y	Υ	
Ν	20,027	$67,\!132$	$67,\!132$	
r2	0.248	0.200	0.171	

Table 7: Effect of social exposure to Medicaid expansions on preferences for state policy, American adults in non-expansion states, 2012-2018

Notes: *** p < .01, ** p < .05, * p < .10. Standard errors (in parentheses) clustered at the county level. Individual controls include age, sex, race and ethnicity, education, marital status, parental status, household income, health insurance status, and political party.

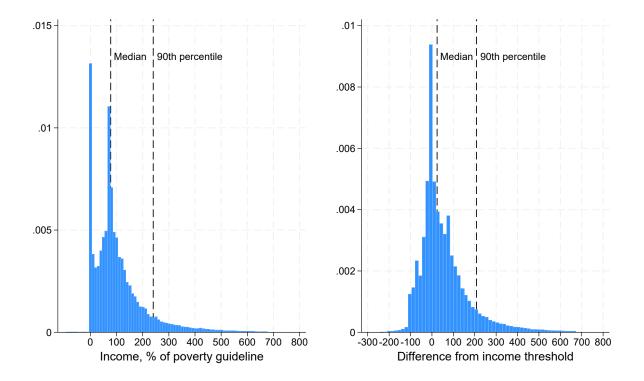
A Supplemental Figures and Tables

	Non-expansion states		Expansion states	
	2012-2013	2017-2018	2012-2013	2017-2018
Male	0.41	0.42	0.42	0.45
Age				
18-25	0.22	0.21	0.22	0.21
26-44	0.40	0.40	0.41	0.42
45-64	0.38	0.39	0.37	0.37
Race/ethnicity				
NH-white	0.51	0.49	0.47	0.46
NH-Black	0.29	0.28	0.20	0.17
Hispanic	0.16	0.17	0.23	0.26
NH-other	0.05	0.06	0.10	0.11
Educational attainment				
Less than high school	0.26	0.22	0.24	0.19
High school	0.48	0.49	0.46	0.47
Some college	0.20	0.21	0.22	0.23
BA or more	0.06	0.08	0.08	0.11
Employment status				
Employed	0.28	0.34	0.34	0.45
Unemployed	0.11	0.07	0.13	0.09
Not in labor force	0.61	0.59	0.53	0.46
Family income, % of FPG	109	122	112	134
Parent	0.46	0.43	0.48	0.42
Disabled	0.40	0.38	0.33	0.26
Childless, non-disabled adult	0.26	0.29	0.29	0.39
Medicaid eligible (strict)	0.36	0.30	0.49	0.65

Table A.1: Summary characteristics of ACS respondents ages 18–64 and covered by Medicaid

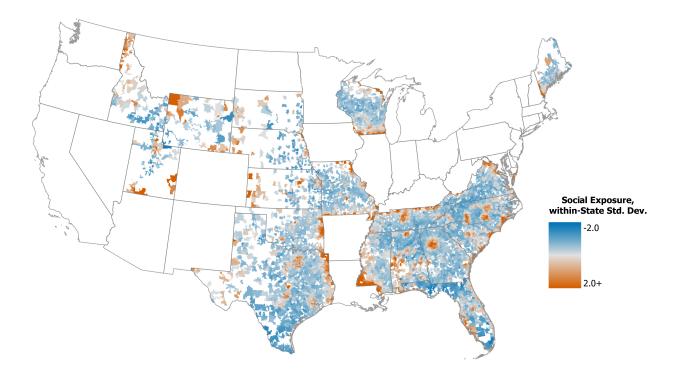
Notes: NH, Non-Hispanic; BA, Bachelor's Degree; FPG, Federal Poverty Guideline. Statistics are proportions unless otherwise noted. Statistics weighted using American Community Survey person-level weights. Expansion and Non-expansion states defined in Figure 1 Family income defined at the health insurance unit level.

Figure A.1: Distribution of reported income among ACS respondents reporting Medicaid coverage, adults ages 18–64 living in non-expansion states in 2012–2018



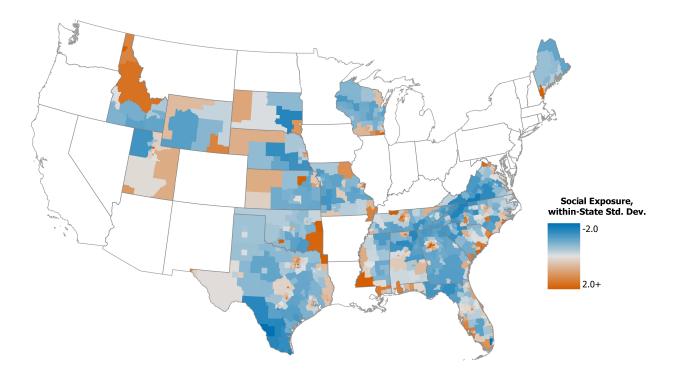
Notes: This figure shows the distribution of reported annual income among people currently reporting Medicaid coverage. The left panel shows median reported income among Medicaid enrollees was just under 100% of the poverty line, and the 90th percentile was just under 250%. The right panel compares reported income to the income threshold for eligibility in the individual's state and eligibility group (parent, disabled). Approximately half of the enrolled population reports income above their implied eligibility threshold.

Figure A.2: Within-State variation in ZIP code-level Social Exposure to Medicaid expansion states



 $\it Notes:$ This figure shows ZIP code social connectedness to Medicaid expansion states, standardized within each state.

Figure A.3: Within-State variation in PUMA-level Social Exposure to Medicaid expansion states

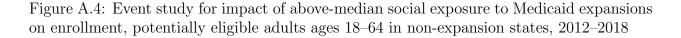


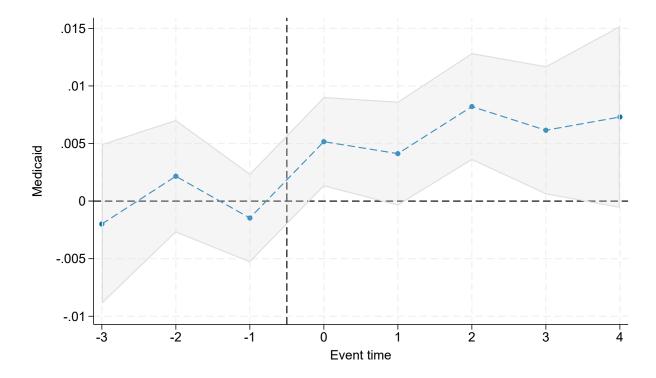
Notes: This figure shows PUMA social connectedness to Medicaid expansion states, standardized within each state. PUMA SCI is aggregated from ZIP code SCI.

Table A.2: Effect of Social Exposure to Medicaid expansions on probability of Medicaid enrollment, low-income population in non-expansion states, 2012–2018

	P(Medicaid enrolled) among:			
	All	Ages $<\!18$	Ages 18-64	Ages $65+$
Social exposure	0.005***	0.003	0.005***	0.002
	(0.002)	(0.004)	(0.002)	(0.003)
PUMA fixed effects	Y	Y	Y	Y
State-year fixed effects	Y	Y	Υ	Y
Income controls	Υ	Υ	Υ	Y
Outcome mean, 2012-13	0.348	0.665	0.206	0.245
Number of observations	$3,\!084,\!270$	$802,\!678$	1,724,350	$557,\!242$

Notes: * p < .10, ** p < .05, *** p < .01. Standard errors (in parentheses) clustered at the PUMA level. Social Exposure is standardized as the z-score and therefore results should be interpreted as the effect of a one standard deviation increase in Social Exposure. Sample includes respondents of all ages with family income below 200% of the Federal Poverty Guideline (FPG).





Notes: This figure shows the dynamic average treatment effects on the treated for the impact of social exposure to Medicaid expansions on the probability of enrollment using the augmented inverse-probability weighting estimation procedures in (callaway2021a). Controls in both the outcome and selection equations include respondent age, sex, race/ethnicity, education, parental status, employment status, and whether they migrated into the state in the past year. Regressions weighted using ACS person-level analysis weights.

Figure A.5: Event study for impact of above-median social exposure to California county Medicaid expansions on ZIP code-level enrollment

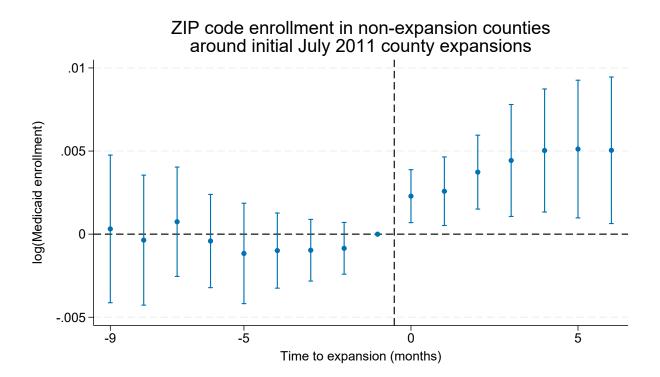


Figure A.6: Effect of Social Exposure on probability of Medicaid enrollment, low-income adults ages 18–64 living in non-expansion states in 2012–2018

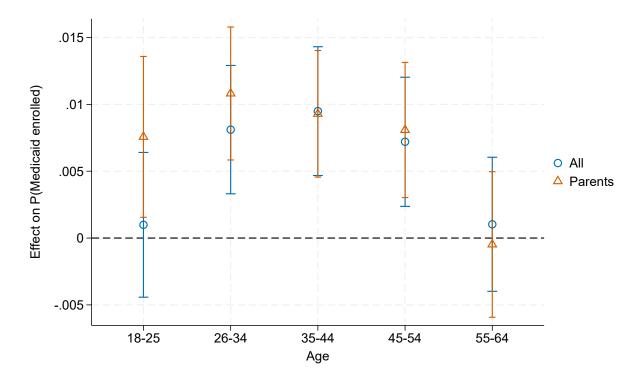


Figure A.7: Impact of above median social exposure to Medicaid expansions on county-level approval of the ACA

